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Statistical mechanical properties of dense emulsions and microemulsions
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The impact of droplet deformability on the macroscopic properties of emulsions and microemulsions is
studied. The deformation energy at the pair level is utilized in the Percus-Yevick closure for solving the
Ornstein-Zernike equation. Thus the radial distribution functions and structure factors for deformable droplets
are calculated and compared with the respective hard sphere results to reveal the effect of the deformation. The
variation of the osmotic pressure with the droplet volume fraction for the same systems is obtained by the
Percus-Yevick integral equation method. It is shown that the droplet deformability may lead to a considerable
reduction of the osmotic pressure of emulsions and microemulsions. A semiempirical equation of state based
on modifying the Carnahan-Starling expression is suggested and compared to the Percus-Yevick results.
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PACS numbd(s): 82.70.Kj, 05.20-y

I. INTRODUCTION surface extension and bendifi§;6]. It was also shown that
such an idealized model shape gives sufficiently accurate re-

Emulsions and microemulsions are colloidal dispersionsults when compared to calculations based on solving the
of liquid in liquid. They are of great industrial importance, augmented Laplace equation for the real droplet sk&pe
but also present academic interest providing many funda- In the present paper we extend our studies to dense mini-
mental problems. Experimental studies of emulsions shovemulsions and microemulsions. Our purpose is to relate the
that in many cases the droplets may exhibit a substantiahicroscopic droplet deformability to the structure of such
deformation when in contact with each otHdd. The de- systems, and further to macroscopic properties as the os-
formability is usually neglected in a theoretical treatment ofmotic pressure. In order to obtain these results we numeri-
submicrometer emulsion@niniemulsiong and microemul- cally solve the Percus-Yevick integral equati@j. The so-
sions, assuming that the small sizes of the droplets provide lation allows us to obtain the radial distribution function and
sufficiently high capillary pressure which leads to a hard-static structure factor for deformable droplets as well as the
sphere-type behavior. This is true for oil-water systems withequation of state for the osmotic pressure vs the volume frac-
high interfacial tension. It was shown recenft8~7] that in  tion of droplets. A semiempirical equation of state, based on
many cases the hard sphere concept is not relevant, and thrabdifying the Carnahan-Starling semiempirical expression
the droplet deformation should be incorporated into the overf9] is suggested and compared to the results from the Percus-
all interaction energy. This energy was calculated at a pailrevick approach. In the following sections we first discuss
(dilute) level, assuming that the interacting droplets obtainthe pair energy of the interdroplet interaction, accounting for
the shape of truncated spheres as shown in Fig. 1. Thihe deformability contributions, and then we briefly present
model shape allowed the derivation of an exact expressiothe Percus-Yevick approach. Section IV deals with the semi-
for the van der Waals interaction energy, and an approximatempirical equation of state, based on the modified Carnahan-
calculation of other long range forces, e.g. electrostaticStarling expression. Section V contains results and discus-
depletion and steric forces, as well as contributions due tsions, and Sec. VI summarizes the concluding remarks.

Il. PAIR INTERACTION ENERGY

We consider a system of monodisperse fluid droplets in a
suspending liquid. The pair energy of the interaction between
two deformable droplets could be assumed to consist of dif-
ferent contributions. Expressions for these contributions
were derived and analyzed in detdd,4,6]. In this study,
however, we will confine ourselves to account only for the
possible effects of the surface bending and area extension

FIG. 1. Two deformed droplets. is the droplet radius andis ~ energies. These two contributions have proven to be the most
the radius of the flat region. important for some systems of practical interest such as mi-

croemulsions and emulsions, stabilized by nonionic surfac-
tants[7]. Below we consider two model systems: microemul-
sions, where only the bending energy will be taken into
*Present address: Chemistry Department, Purdue Universitygccount, and miniemulsions, where the interaction is due to
1393 Brown Bldg., Bin #168, West Lafayette, IN 47907-1393.  the surface extension energy.
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A. Microemulsions: surface bending energy g(Z) as well as the dependence of the osmotic pressure,
The bending contribution to the pair interaction energy,Pos, on the volume fraction of the droplet®, from the
WE, for weakly deformed droplets (1z/2a<1) is given by  relationship[8]
the following expressiof3,6,7]:

Pos o dW(z) -~
B kel R kT 1 wka‘ﬁ dz 9(%) ®
WS (z)=16m(1-2)=| 1~ ek z<1 wheren is the particle number density.
Ro Another measurable quantity is the structure factor of the
-0 7>1 (1) emulsion or microemulsion which [8]
wherez=2z/2a is the distance between the droplet mass cen- S(q)=1+ z@f dz "2‘2( %) [1-9(Z)]. (6)
ters divided by the droplet diametea2There are two physi- qz

cally important parameters which control the deformation: \yith g we denote the wave vector arg=2qa. The

kc is the bending elasticity constant, aR§=R,/a is the  structure factor may be obtained by light scattering experi-
radius of the spontaneous curvature divided by the droplemnents[10].

radiusa. The greater the energy, the harder the droplets. In Hence we may adopt the following algorithm: the pair
some practical cases, the bending contribution could be vaenergy, which depends on the interfacial bendigg. (1)] or

ied by changing the temperature and therefore the radius cfurface area extensidiq. (2)], is introduced in the Percus-
the spontaneous curvaturé]. The bending energy could be Yevick closure expressiotd). Combining Eq.(4) with the
important for largeminiemulsion droplets as wel[6], but  Ornstein-Zernike equatio(8) one may solve the radial dis-
for clarity we will take it into account only in the microemul- tribution function. Knowing this quantity, all thermodynamic
sion case. functions could be obtained].

B. Miniemulsions: surface area extension energy IV. CARNAHAN-STARLING EXPRESSION

. . L FOR DEFORMABLE DROPLETS
In this case we consider the energy contribution due to the

change of the droplet surface with the deformatidfy. For systems consisting of hard spherical particles, the

Again for small deformations, the following expression most accurate equation of state is given by the Carnahan-

holds[3,6,7]: Starling semiempirical expressi¢8,9]
WS(Z)=2maly(1-2)% Z<1 Pos 1+®+0%—0° @

nkT  (1-®)°
It is tempting, therefore, to apply this expression to deform-
wherey is the interfacial tension which controls the droplet able fluid particles as well. One possible way to incorporate
deformability. This expression could be completed with aother than hard sphere interactions in the Carnahan-Starling
term accounting for the Gibbs elasticity, but the latter is ne-€xpression is based on the use of perturbation metfgjds
glected in the present study. The greater the interfacial terSuch an approach was used by Brout to account for weak
sion, the harder the droplets. This type of interaction energgttractive interactiofil1]. It seems quite natural to apply the
refers to the miniemulsion case. perturbation method for weakly deformable spheres. How-
ever, the perturbation term, added to the pure hard sphere
part — Eq.(7)—is presented by an integral over the pertur-
bation energy multiplied by thbard sphereradial distribu-
tion function. Since the deformability manifests itself for dis-
Our purpose is to determine the radial distribution func-tances smaller than the droplet diameter, such a term will be
always zero. Therefore, the conventional perturbation theory
is not relevant to the case of interacting deformable droplets.
As an alternative we offer the following approach. We define
an effective volume fraction

=0, z>1, 2

Ill. PERCUS-YEVICK APPROXIMATION
FOR DEFORMABLE DROPLETS

tion g(z), which is the probability of finding a droplet at a
given distancez from another one. This can be done by
numerically solving the Ornstein-Zernike equation

> = 6D ) I BZ
h(7)-o@)+ = [ dZ'e@nE-7). @ Y ®
2
whereh(Z)=g(z)—1 is the total correlation function and With B, being the second osmotic virial coefficient,
the unknown direct correlation functiar(z) is obtained by
the Percus-Yevick closure]

W(2)
1—exp< KT )
andW(z) is given by Egs(1) or (2). BY5=4 is the virial
wherekT denotes the thermal energy. Equati¢Bsand(4),  coefficient for hard spheres. Introducing the effective volume
together with the expression for the poten(z) [Egs.(1)  fraction, defined by Eq(8) in the Carnahan-Starling expres-
or (2)], allow us to determine the radial distribution function sion (7) we obtain a formula relating the osmotic pressure of

W(2)
KT

Bzzlzfdz 1—ex Z2, 9)

c(z)= 9(2), (4)
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FIG. 2. Radial distribution function for microemulsion droplets
(solid curve compared with hard spherdédotted curvg Param-
eters:ikc=kT, Ry=1, and®=0.21.

the emulsion or microemulsion to the volume fraction of
droplets and their interfacial propertiésurface area exten-
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FIG. 4. Radial distribution function for microemulsion droplets
(solid curve compared with hard spherédotted curveé Param-
eters:kc=KkT, Ry=1, and®=0.42.

structure factor of the microemulsidsolid curve and hard
spheregdotted curvé — see Eq(6). Although some differ-

sion and bending Such an approach is less rigorous thanence is present it is probably too small to be detected by a

that, based on solving the Ornstein-Zernike equat®nbut

light scattering experiment.

is much simpler and faster. As we show below, the results Figure 4 shows a microemulsion radial distribution func-

seem to be quite reasonable.

V. RESULTS AND DISCUSSION

A. Radial distribution function

Figure 2 depicts a comparison between the radial distri
bution functions for deformable microemulsion droplets
(solid curve and hard spheres with the same radidstted
curve), obtained from Eqs(3) and (4). The pair energy of
interaction in this case is given by El). The parameters
used in the calculation arkc=kT, Ry=1, and ®=0.21.
The influence of the deformability is clearly seen in the fig-
ure. The radial distribution function for the microemulsion
droplets is not zero far<1, due to the fact that the softness

tion (solid curve compared with hard spherédotted curve
at a higher volume fractio® =0.42. The other parameters
are the same as in Fig. 2. The radial distribution displays
enhanced structuring due to the larger volume fraction, but
shows a similar trend faz<1 as for the lower volume frac-
tion. However, the local ordering is considerably less pro-
nounced for deformable droplets than it is for hard spheres.
The main peak is smaller as well as the other peaks, corre-
sponding to the next neighbor shells. Hence the ordering in
emulsions decays more rapidly with distance due to the drop-
let deformability. Figure 5 illustrates the corresponding
structure factor. The difference between deformalsiaid
curve and hard sphere@lotted curve in this case is large
enough to expect that it could be detected by the experiment.
Figure 6 displays the radial distribution function for the
emulsion, with the volume fractiof = 0.21. In this case the

of the fluid particles allows them to approach at distancegy oplet deformability is controlled by the surface area exten-
smaller than their diameter. Figure 3 shows the respectivgjyn, energy through the interfacial tension according to Eq.
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FIG. 3. Structure factor for microemulsion droplésslid curve
and hard spheregglotted curve The parameters are the same as in
Fig. 2.
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FIG. 5. Structure factor for microemulsion droplésslid curve
and hard sphergglotted curveé The parameters are the same as in
Fig. 4.
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FIG. 6. Radial distribution function for emulsion droplés®lid FIG. 8. Osmptic pressure calculatedff‘rom the I?ercus-Yevick
curve compared with hard spherédotted curvg The parameters approach for microemulsion droplets wiR,=1 (solid curve,
used in the calculation area®y/kT=760 and®=0.21. Ro=1.2 (dashed curje and for hard spheregdotted curve

kc=KT for all microemulsion curves. The inset presents a compatri-
(2). The calculations are forra2y/kT=760. This could son between Percus-Yevidsolid curve$ and Carpahan-St_arIing
be, for example, the emulsion of 100-nm droplets with(dashed curvesresults for hard spherespper paif and micro-
y=0.1 mN/m. The behavior of the radial distribution func- €muision droplets wittRo=1.2 (lower paip.
tion is similar to the case of microemulsions, with the de-
formability controlled by the interfacial bending. The radial Yevick results for deformable microemulsion droplets where
distribution function again has a nonzero region T 1. the solid curve is forRy=1, the dashed curve is for
The situation at a higher volume fractidh=0.42(see Fig. R,=1.2, and where the dotted curve corresponds to the hard
7) also resembles the microemulsion result. The local ordersphere case. The droplet deformability increases with the ra-
ing of the deformable droplets is again suppressed in cOMyjiys of spontaneous curvatur@, [7], and this leads to a
parison with the hard sphere case, as it was for microemukgqyced osmotic pressure. This is an expected result since the
sions. softer the droplets, the lower the pressure. The effect of the
deformability on the osmotic pressure is rather substantial.
The decrease in comparison with hard spheres is about 30%
for Rp=1 and about 40% foRy,=1.2. The inset of Fig. 8

The osmotic pressure is calculated both by means of thilustrates the comparison between Percus-Yevisklid

Percus-Yevick approach, using E@) or with the help of curves and modified Carnahan-Starling resultdashed
the Carnahan-Starling expression, K@), introducing the curves for hard spheretupper paiy and deformable droplets
effective volume fraction—see EB). The results are plot- with Ry=1.2 (lower paiy. For both cases the use of the
ted in Fig. 8. The main plot of Fig. 8 shows the Percus-Carnahan-Starling type of equation of state leads to higher

B. Osmotic pressure
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FIG. 7. Radial distribution function for emulsion dropléselid FIG. 9. Three-dimension4BD) plot of the osmotic pressure for
curve compared with hard spherg¢dotted curvg The parameters the microemulsion vs the volume fraction and the bending elasticity
used in the calculation areay/kT="760 and®=0.42. constantRy=1.2.
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osmotic pressures than those obtained by means of the
Percus-Yevick approach. It is known, however, that for hard
spheres the semiempirical expression is more accurate than
any integral equation result because of the closure approxi-
mations involved[8,12]. The differences between the two
results are qualitatively the same for both hard and deform-
able spheres—the pressures calculated by the Carnahan-Pos/m KT
Starling expression are higher than those derived from the
Percus-Yevick approach. One may speculate, therefore, that
the simpler expressiof7), together with Eqs(8) and (9)

may be even more accurate than the rigorous integral equa-
tion results. Such a speculation could be justified by appro-
priate experiments on osmotic pressures in emulsions and
microemulsions.

Figure ngho,E{VS a ?etﬂerahfed pl;:turﬁ of thedotshmoélc F:jr.es_ FIG. 10. 3D plot of the osmotic pressure for the emulsion vs the
Suré as a function ot the volume fraction an € Dending;,jume fraction and the interfacial tensian= 100 nm andr = 298

elasticity constant for the microemulsion system. Equationg
4 [ma?y 1"‘f s w(h,T)
T(1/4) | 2kT rex kT ||’

¥ (mN/m)

(7)—(9) were used for this calculation witRy=1.2. Figure
10 illustrates the emulsion case for droplets with radius [

a=100 nm. Both figures show that the effect of the dropletyy7)=kT In
deformation is most substantial for droplets of low bending

elasticity and/or interfacial tension, and at high volume frac- (10
tions. _
whereh=h/a andr=r/a are the dimensionless film thick-
VI. CONCLUDING REMARKS ness and radius respectively(x) is the gamma function,
andI'(1/4)=3.625609908. .. . In this case the pair energy,

In the present paper we study the statistical mechanicaiefined by Eq(10) should be introduced into the closu@
properties of fluid Brownian particlesiminiemulsions in order to obtain the thermodynamic parameters of the sys-
and microemulsions taking into account the interfacial de- tem.
formability of the droplets. We show that the effect of  Our purpose in this paper, however, was to point the im-
the deformability could lead to significant change in theportance of the droplet interfacial deformability only on the
macroscopic parameters of the system as the osmotic presracroscopic behavior of emulsions and microemulsions. In
sure. This is important for oil-water mixtures with low addition, there are many cases in which these long range
interfacial tension and bending energy as is the caseontributions(e.g., electrostatic and van der Waaisuld be
for many oil-water-surfactant mixtures of practical neglected without loss of accurafy].

importance[13]. Typically one should havé.<kT and The use of the Percus-Yevick closui is also an ap-
Ro=1 for microemulsions andra?y/kT<1(® for mini-  Proximation, necessary to solve E@). More accurate re-
emulsions in order to be able to account for deformabiliySults could be obtained by numerical simulations, although
effects they will not qualitatively change the general trends in the

An important restriction of our consideration is the as_be_hawor of systems of deformable draplets. Anoth_er quant
. . . . tative check of the suggested model could be a direct com-
sumption of the monodispersity of the systems. Microemul-__ . . . o
sions are usually monodisperse since thev are thermod parison with experimental results. One possibility is to mea-
) y pel : €y a ¥Xure the structure factor of such emulsions or
namically stable and their radius is fixed from

. : i microemulsions, as suggested above. Another one is to mea-
thermodynamic constraints. Emulsions, conversely, are usds re the osmotic pressure of such systems at different vol-

ally rather polydisperse. It was shown recently, however, thafne fractions of droplets. The latter approach seems more
monodisperse emulsion sample could be obtained for use IBopropriate since the effect of the droplet deformability on
model experimental studigd4]. the osmotic pressure is rather substantial. Therefore we be-
Another assumption is the attribution of the overall inter-jieve that some efforts in these directions deserve to be per-
droplet interaction to pure bending or interfacial area extenformed in the future.
sion contributions. In reality there are many other possible The consideration presented in this paper could be useful
interactions which could be present and affect the total paiin studying the stability and equilibrium properties of emul-
energy, such as van der Waals, electrostatic, depletiorsions and microemulsions. It could also provide a back-
steric, etc. [3,4,6. The incorporation of all these ground for modeling the rheology of such systefkisowing
contributions into the present approach is straightforwardthe compressibilitywhich is of great industrial importance.
When long range interactior{itke van der Waals and elec-
trostatig are present, additional integration is needed in or-
der to average the pair energy with respect to all possible
radii of the formed thin liquid film between the droplets  This work was supported by the Swedish National Sci-
[4,6], ence Research Council.
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