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Statistical mechanical properties of dense emulsions and microemulsions
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The impact of droplet deformability on the macroscopic properties of emulsions and microemulsions is
studied. The deformation energy at the pair level is utilized in the Percus-Yevick closure for solving the
Ornstein-Zernike equation. Thus the radial distribution functions and structure factors for deformable droplets
are calculated and compared with the respective hard sphere results to reveal the effect of the deformation. The
variation of the osmotic pressure with the droplet volume fraction for the same systems is obtained by the
Percus-Yevick integral equation method. It is shown that the droplet deformability may lead to a considerable
reduction of the osmotic pressure of emulsions and microemulsions. A semiempirical equation of state based
on modifying the Carnahan-Starling expression is suggested and compared to the Percus-Yevick results.
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I. INTRODUCTION

Emulsions and microemulsions are colloidal dispersio
of liquid in liquid. They are of great industrial importanc
but also present academic interest providing many fun
mental problems. Experimental studies of emulsions sh
that in many cases the droplets may exhibit a substan
deformation when in contact with each other@1#. The de-
formability is usually neglected in a theoretical treatment
submicrometer emulsions~miniemulsions! and microemul-
sions, assuming that the small sizes of the droplets provi
sufficiently high capillary pressure which leads to a ha
sphere-type behavior. This is true for oil-water systems w
high interfacial tension. It was shown recently@2–7# that in
many cases the hard sphere concept is not relevant, and
the droplet deformation should be incorporated into the ov
all interaction energy. This energy was calculated at a p
~dilute! level, assuming that the interacting droplets obt
the shape of truncated spheres as shown in Fig. 1.
model shape allowed the derivation of an exact expres
for the van der Waals interaction energy, and an approxim
calculation of other long range forces, e.g. electrosta
depletion and steric forces, as well as contributions due

FIG. 1. Two deformed droplets.a is the droplet radius andr is
the radius of the flat region.
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surface extension and bending@3,6#. It was also shown tha
such an idealized model shape gives sufficiently accurate
sults when compared to calculations based on solving
augmented Laplace equation for the real droplet shape@5#.

In the present paper we extend our studies to dense m
emulsions and microemulsions. Our purpose is to relate
microscopic droplet deformability to the structure of su
systems, and further to macroscopic properties as the
motic pressure. In order to obtain these results we num
cally solve the Percus-Yevick integral equation@8#. The so-
lution allows us to obtain the radial distribution function an
static structure factor for deformable droplets as well as
equation of state for the osmotic pressure vs the volume f
tion of droplets. A semiempirical equation of state, based
modifying the Carnahan-Starling semiempirical express
@9# is suggested and compared to the results from the Per
Yevick approach. In the following sections we first discu
the pair energy of the interdroplet interaction, accounting
the deformability contributions, and then we briefly prese
the Percus-Yevick approach. Section IV deals with the se
empirical equation of state, based on the modified Carnah
Starling expression. Section V contains results and disc
sions, and Sec. VI summarizes the concluding remarks.

II. PAIR INTERACTION ENERGY

We consider a system of monodisperse fluid droplets i
suspending liquid. The pair energy of the interaction betwe
two deformable droplets could be assumed to consist of
ferent contributions. Expressions for these contributio
were derived and analyzed in detail@3,4,6#. In this study,
however, we will confine ourselves to account only for t
possible effects of the surface bending and area exten
energies. These two contributions have proven to be the m
important for some systems of practical interest such as
croemulsions and emulsions, stabilized by nonionic surf
tants@7#. Below we consider two model systems: microem
sions, where only the bending energy will be taken in
account, and miniemulsions, where the interaction is due
the surface extension energy.
ty,
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55 587STATISTICAL MECHANICAL PROPERTIES OF DENSE . . .
A. Microemulsions: surface bending energy

The bending contribution to the pair interaction energ
WC, for weakly deformed droplets (12z/2a!1) is given by
the following expression@3,6,7#:

WC~ z̃ !516p~12 z̃ !
kC

R̃0

S 12
R̃0

2
D , z̃,1

50, z̃ .1, ~1!

wherez̃5z/2a is the distance between the droplet mass c
ters divided by the droplet diameter 2a. There are two physi-
cally important parameters which control the deformatio

kC is the bending elasticity constant, andR̃05R0 /a is the
radius of the spontaneous curvature divided by the dro
radiusa. The greater the energy, the harder the droplets
some practical cases, the bending contribution could be
ied by changing the temperature and therefore the radiu
the spontaneous curvature@7#. The bending energy could b
important for larger~miniemulsion! droplets as well@6#, but
for clarity we will take it into account only in the microemu
sion case.

B. Miniemulsions: surface area extension energy

In this case we consider the energy contribution due to
change of the droplet surface with the deformationWS.
Again for small deformations, the following expressio
holds @3,6,7#:

WS~ z̃ !52pa2g~12 z̃ !2, z̃,1

50, z̃ .1, ~2!

whereg is the interfacial tension which controls the drop
deformability. This expression could be completed with
term accounting for the Gibbs elasticity, but the latter is n
glected in the present study. The greater the interfacial
sion, the harder the droplets. This type of interaction ene
refers to the miniemulsion case.

III. PERCUS-YEVICK APPROXIMATION
FOR DEFORMABLE DROPLETS

Our purpose is to determine the radial distribution fun
tion g( z̃), which is the probability of finding a droplet at
given distancez̃ from another one. This can be done b
numerically solving the Ornstein-Zernike equation

h~ z̃ !5c~ z̃ !1
6F

p E d z̃8c~ z̃8!h~ u z̃2 z̃8u!, ~3!

whereh( z̃)5g( z̃)21 is the total correlation function an
the unknown direct correlation functionc( z̃) is obtained by
the Percus-Yevick closure@8#

c~ z̃ !5F12expSW~ z̃ !

kT
D Gg~ z̃ !, ~4!

wherekT denotes the thermal energy. Equations~3! and~4!,
together with the expression for the potentialW( z̃) @Eqs.~1!
or ~2!#, allow us to determine the radial distribution functio
,
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g( z̃) as well as the dependence of the osmotic press
POS, on the volume fraction of the droplets,F, from the
relationship@8#

POS

nkT
512

F

pkTE dz̃
dW~ z̃ !

dz
g~ z̃ !, ~5!

wheren is the particle number density.
Another measurable quantity is the structure factor of

emulsion or microemulsion which is@8#

S~ q̃!51124FE dz̃ z̃ 2S sinq̃ z̃

q̃ z̃
D @12g~ z̃ !#. ~6!

With q we denote the wave vector andq̃52qa. The
structure factor may be obtained by light scattering exp
ments@10#.

Hence we may adopt the following algorithm: the pa
energy, which depends on the interfacial bending@Eq. ~1!# or
surface area extension@Eq. ~2!#, is introduced in the Percus
Yevick closure expression~4!. Combining Eq.~4! with the
Ornstein-Zernike equation~3! one may solve the radial dis
tribution function. Knowing this quantity, all thermodynam
functions could be obtained@8#.

IV. CARNAHAN-STARLING EXPRESSION
FOR DEFORMABLE DROPLETS

For systems consisting of hard spherical particles,
most accurate equation of state is given by the Carnah
Starling semiempirical expression@8,9#

POS

nkT
5
11F1F22F3

~12F!3
. ~7!

It is tempting, therefore, to apply this expression to defor
able fluid particles as well. One possible way to incorpor
other than hard sphere interactions in the Carnahan-Sta
expression is based on the use of perturbation methods@8#.
Such an approach was used by Brout to account for w
attractive interaction@11#. It seems quite natural to apply th
perturbation method for weakly deformable spheres. Ho
ever, the perturbation term, added to the pure hard sp
part — Eq.~7!—is presented by an integral over the pertu
bation energy multiplied by thehard sphereradial distribu-
tion function. Since the deformability manifests itself for di
tances smaller than the droplet diameter, such a term wil
always zero. Therefore, the conventional perturbation the
is not relevant to the case of interacting deformable dropl
As an alternative we offer the following approach. We defi
an effective volume fraction

FEFF5
B2

B2
HSF, ~8!

with B2 being the second osmotic virial coefficient,

B2512E dz̃ F12expSW~ z̃!

kT D G z̃ 2, ~9!

andW( z̃ ) is given by Eqs.~1! or ~2!. B2
HS54 is the virial

coefficient for hard spheres. Introducing the effective volu
fraction, defined by Eq.~8! in the Carnahan-Starling expres
sion ~7! we obtain a formula relating the osmotic pressure
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588 55DIMITER N. PETSEV AND PER LINSE
the emulsion or microemulsion to the volume fraction
droplets and their interfacial properties~surface area exten
sion and bending!. Such an approach is less rigorous th
that, based on solving the Ornstein-Zernike equation~3!, but
is much simpler and faster. As we show below, the res
seem to be quite reasonable.

V. RESULTS AND DISCUSSION

A. Radial distribution function

Figure 2 depicts a comparison between the radial dis
bution functions for deformable microemulsion drople
~solid curve! and hard spheres with the same radius~dotted
curve!, obtained from Eqs.~3! and ~4!. The pair energy of
interaction in this case is given by Eq.~1!. The parameters

used in the calculation arekC5kT, R̃051, andF50.21.
The influence of the deformability is clearly seen in the fi
ure. The radial distribution function for the microemulsio
droplets is not zero forz̃,1, due to the fact that the softnes
of the fluid particles allows them to approach at distan
smaller than their diameter. Figure 3 shows the respec

FIG. 2. Radial distribution function for microemulsion drople
~solid curve! compared with hard spheres~dotted curve!. Param-
eters:kC5kT, R̃051, andF50.21.

FIG. 3. Structure factor for microemulsion droplets~solid curve!
and hard spheres~dotted curve!. The parameters are the same as
Fig. 2.
f
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structure factor of the microemulsion~solid curve! and hard
spheres~dotted curve! — see Eq.~6!. Although some differ-
ence is present it is probably too small to be detected b
light scattering experiment.

Figure 4 shows a microemulsion radial distribution fun
tion ~solid curve! compared with hard spheres~dotted curve!
at a higher volume fractionF50.42. The other parameter
are the same as in Fig. 2. The radial distribution displa
enhanced structuring due to the larger volume fraction,
shows a similar trend forz̃,1 as for the lower volume frac
tion. However, the local ordering is considerably less p
nounced for deformable droplets than it is for hard sphe
The main peak is smaller as well as the other peaks, co
sponding to the next neighbor shells. Hence the ordering
emulsions decays more rapidly with distance due to the dr
let deformability. Figure 5 illustrates the correspondi
structure factor. The difference between deformable~solid
curve! and hard spheres~dotted curve! in this case is large
enough to expect that it could be detected by the experim

Figure 6 displays the radial distribution function for th
emulsion, with the volume fractionF50.21. In this case the
droplet deformability is controlled by the surface area ext
sion energy through the interfacial tension according to

FIG. 4. Radial distribution function for microemulsion drople
~solid curve! compared with hard spheres~dotted curve!. Param-
eters:kC5kT, R̃051, andF50.42.

FIG. 5. Structure factor for microemulsion droplets~solid curve!
and hard spheres~dotted curve!. The parameters are the same as
Fig. 4.
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55 589STATISTICAL MECHANICAL PROPERTIES OF DENSE . . .
~2!. The calculations are forpa2g/kT5760. This could
be, for example, the emulsion of 100-nm droplets w
g50.1 mN/m. The behavior of the radial distribution fun
tion is similar to the case of microemulsions, with the d
formability controlled by the interfacial bending. The radi
distribution function again has a nonzero region forz̃,1.
The situation at a higher volume fractionF50.42 ~see Fig.
7! also resembles the microemulsion result. The local ord
ing of the deformable droplets is again suppressed in co
parison with the hard sphere case, as it was for microem
sions.

B. Osmotic pressure

The osmotic pressure is calculated both by means of
Percus-Yevick approach, using Eq.~5! or with the help of
the Carnahan-Starling expression, Eq.~7!, introducing the
effective volume fraction—see Eq.~8!. The results are plot-
ted in Fig. 8. The main plot of Fig. 8 shows the Percu

FIG. 6. Radial distribution function for emulsion droplets~solid
curve! compared with hard spheres~dotted curve!. The parameters
used in the calculation arepa2g/kT5760 andF50.21.

FIG. 7. Radial distribution function for emulsion droplets~solid
curve! compared with hard spheres~dotted curve!. The parameters
used in the calculation arepa2g/kT5760 andF50.42.
-

r-
-
l-

e

-

Yevick results for deformable microemulsion droplets whe
the solid curve is forR̃051, the dashed curve is fo
R̃051.2, and where the dotted curve corresponds to the h
sphere case. The droplet deformability increases with the
dius of spontaneous curvature,R̃0 @7#, and this leads to a
reduced osmotic pressure. This is an expected result sinc
softer the droplets, the lower the pressure. The effect of
deformability on the osmotic pressure is rather substan
The decrease in comparison with hard spheres is about
for R̃051 and about 40% forR̃051.2. The inset of Fig. 8
illustrates the comparison between Percus-Yevick~solid
curves! and modified Carnahan-Starling results~dashed
curves! for hard spheres~upper pair! and deformable droplets
with R̃051.2 ~lower pair!. For both cases the use of th
Carnahan-Starling type of equation of state leads to hig

FIG. 8. Osmotic pressure calculated from the Percus-Yev
approach for microemulsion droplets withR̃051 ~solid curve!,
R̃051.2 ~dashed curve! and for hard spheres~dotted curve!.
kC5kT for all microemulsion curves. The inset presents a comp
son between Percus-Yevick~solid curves! and Carnahan-Starling
~dashed curves! results for hard spheres~upper pair! and micro-
emulsion droplets withR̃051.2 ~lower pair!.

FIG. 9. Three-dimensional~3D! plot of the osmotic pressure fo
the microemulsion vs the volume fraction and the bending elasti
constant.R̃051.2.
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590 55DIMITER N. PETSEV AND PER LINSE
osmotic pressures than those obtained by means of
Percus-Yevick approach. It is known, however, that for h
spheres the semiempirical expression is more accurate
any integral equation result because of the closure appr
mations involved@8,12#. The differences between the tw
results are qualitatively the same for both hard and defo
able spheres—the pressures calculated by the Carna
Starling expression are higher than those derived from
Percus-Yevick approach. One may speculate, therefore,
the simpler expression~7!, together with Eqs.~8! and ~9!
may be even more accurate than the rigorous integral e
tion results. Such a speculation could be justified by app
priate experiments on osmotic pressures in emulsions
microemulsions.

Figure 9 shows a generalized picture of the osmotic p
sure as a function of the volume fraction and the bend
elasticity constant for the microemulsion system. Equati
~7!–~9! were used for this calculation withR̃051.2. Figure
10 illustrates the emulsion case for droplets with rad
a5100 nm. Both figures show that the effect of the drop
deformation is most substantial for droplets of low bend
elasticity and/or interfacial tension, and at high volume fra
tions.

VI. CONCLUDING REMARKS

In the present paper we study the statistical mechan
properties of fluid Brownian particles~miniemulsions
and microemulsions!, taking into account the interfacial de
formability of the droplets. We show that the effect
the deformability could lead to significant change in t
macroscopic parameters of the system as the osmotic p
sure. This is important for oil-water mixtures with low
interfacial tension and bending energy as is the c
for many oil-water-surfactant mixtures of practic
importance@13#. Typically one should havekC<kT and
R̃0>1 for microemulsions andpa2g/kT<103 for mini-
emulsions in order to be able to account for deformabi
effects.

An important restriction of our consideration is the a
sumption of the monodispersity of the systems. Microem
sions are usually monodisperse since they are therm
namically stable and their radius is fixed fro
thermodynamic constraints. Emulsions, conversely, are u
ally rather polydisperse. It was shown recently, however, t
monodisperse emulsion sample could be obtained for us
model experimental studies@14#.

Another assumption is the attribution of the overall inte
droplet interaction to pure bending or interfacial area ext
sion contributions. In reality there are many other possi
interactions which could be present and affect the total p
energy, such as van der Waals, electrostatic, deple
steric, etc. @3,4,6#. The incorporation of all these
contributions into the present approach is straightforwa
When long range interactions~like van der Waals and elec
trostatic! are present, additional integration is needed in
der to average the pair energy with respect to all poss
radii of the formed thin liquid film between the drople
@4,6#,
he
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w̄~ z̃!5kT lnH 4

G~1/4!
S pa2g

2kT
D 1/4E dr̃ expF2

W~ h̃, r̃ !

kT
G J ,
~10!

whereh̃5h/a and r̃5r /a are the dimensionless film thick
ness and radius respectively.G(x) is the gamma function,
andG(1/4)53.625609908 . . . . In this case the pair energ
defined by Eq.~10! should be introduced into the closure~4!
in order to obtain the thermodynamic parameters of the s
tem.

Our purpose in this paper, however, was to point the
portance of the droplet interfacial deformability only on th
macroscopic behavior of emulsions and microemulsions
addition, there are many cases in which these long ra
contributions~e.g., electrostatic and van der Waals! could be
neglected without loss of accuracy@7#.

The use of the Percus-Yevick closure~4! is also an ap-
proximation, necessary to solve Eq.~3!. More accurate re-
sults could be obtained by numerical simulations, althou
they will not qualitatively change the general trends in t
behavior of systems of deformable droplets. Another qua
tative check of the suggested model could be a direct c
parison with experimental results. One possibility is to me
sure the structure factor of such emulsions
microemulsions, as suggested above. Another one is to m
sure the osmotic pressure of such systems at different
ume fractions of droplets. The latter approach seems m
appropriate since the effect of the droplet deformability
the osmotic pressure is rather substantial. Therefore we
lieve that some efforts in these directions deserve to be
formed in the future.

The consideration presented in this paper could be us
in studying the stability and equilibrium properties of emu
sions and microemulsions. It could also provide a ba
ground for modeling the rheology of such systems~knowing
the compressibility! which is of great industrial importance
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FIG. 10. 3D plot of the osmotic pressure for the emulsion vs
volume fraction and the interfacial tension.a5100 nm andT5 298
K.
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